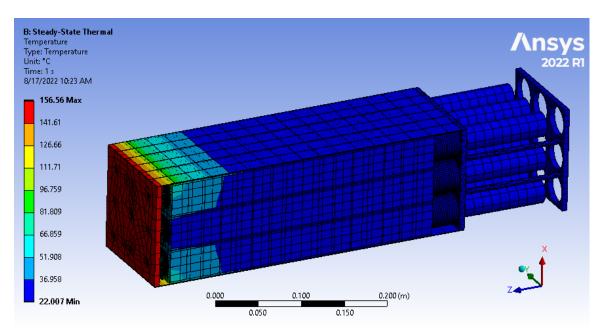


Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".


Weekly Report, 2022-08-17

Summary

Hall A - ECal

George Jacobs, Mindy Leffel, Tyler Lemon, and Marc McMullen

- Developing Ansys steady-state thermal model for heating a supermodule using thermal tape on its end plate
 - **★** Applied 100 W of heat to end plate of module
 - **★** Temperature at end plate rises to ~156°C, but the very small contact area between end plate and other parts results in heat quickly dissipating so most of supermodule remains close to ambient temperature
 - **★** Suspect that model will have to use Ansys Fluent to consider heating of air in gaps around supermodule

Steady-state thermal analysis results with 100 W of heat applied to end plate of supermodule

Hall A - GEn-II

Mindy Leffel

• Fabricated and tested five twisted pair cables; 26 of 42 complete

Hall A - SoLID

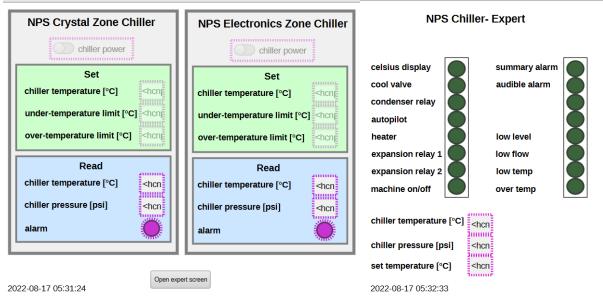
Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

• Repaired transposed wires on JT valve connector

Hall C - NPS

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, and Marc McMullen

• Created LabVIEW network variables and EPICS process variables for the chillers



Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2022-08-17

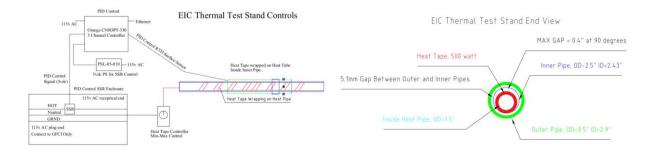
- Generated two chiller Phoebus screens, Main and Expert, for one chiller tested and debugged; works as expected
- Adding second chiller inputs and readback to each screen

Main screen with both chillers (left); Expert screen for one chiller (right), to be updated with second chiller

- Updating process variable spreadsheet with LabVIEW variable name, data type, number of elements in arrays, and Phoebus screen name
- Adding HV controls and monitoring Phoebus screens to the Hall C NPS computer (cdaql3)
 - **★** Debugging and revising screens as needed to ensure they work as expected in the Hall C computing environment
- Investigating VME LED Driver (VLD) test stand
 - * Received VME controller from DAQ group
 - **★** Was able to read VLD registers, but first one didn't match the manual due to old firmware
- Debugged cRIO's serial communication using NI-9870 serial modules
- Tested and debugged cRIO communication to Keysight mainframe
 - **★** cRIO can communicate to mainframe through a USB connection
 - ★ Depending on final location of Keysight mainframe and cRIO in Hall C, a USB repeater cable may be needed for connection
 - If Keysight mainframe and cRIO are extremely far apart (> 50 ft.), will have to revert back to using serial-to-GPIB converter
- Continued working on 52-pin Radiall connector to SHV adapter
 - **★** Wired 12 cables; 36 of 48 complete

EIC

Pablo Campero, Brian Eng, and George Jacobs


• Developing beam pipe test setup – thermal test heater controls

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2022-08-17

DSG R&D – EPICS Alarm System

Peter Bonneau

- Conducting PV alarm latch testing using the Phoebus alarm test system
 - **★** An EPICS softIOC simulates four temperatures from the crystal zone chiller, electronics zone chiller, and crystal thermocouples
 - ★ Using the test system user interface, the PV alarm configurations were set to enable alarm latching and PV value thresholds were set allowing all levels and severities of alarms
 - **★** The alarm system correctly latched HIHI, HIGH, LOW, and LOLO levels of alarms
 - The PV value and the time of the alarm was latched correctly
 - The latched alarms were held continuously until acknowledged by the user

Phoebus Alarm Test System User Interface with latched HIHI, HIGH, LOW, and LOLO